Precalculus Plus (Formerly named Trigonometry and Mathematical Analysis Honors PLUS) Summer Assignment 2018 Name_____

Part I: Graphing Parent Functions and the Rule of Four

Quick Review – The Rule of Four

There are four basic ways of representing functions: verbal, algebraic, numerical, and graphical.

- Verbal includes listing the name of the function and describing its characteristics.
- Algebraic includes writing the equation of the parent function.
- Numerical includes writing 5 key anchor points and features, such as the location of any hole(s) and the equations for all asymptotes (if any). Choose "nice" *x* values often we use *x* values of -2, -1, 0, 1, 2 unless the function is not defined for those values or those values are hard to compute.
- Graphical includes plotting points and sketching the graph. Please indicate your scale on both axes.

Example: Absolute Value Parent Function

Problem Set I: Graphing Parent Functions and The Rule of Four Given the name of the following parent functions, complete the rule of four charts for each.

Verbal: Name: <i>Quadratic Function</i> Domain: Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

Quadratic Function 1.

2. Square Root Function

Verbal: Name: Square Root Function Domain: Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

3. Cubic Function

Verbal:Name:Cubic FunctionDomain:Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

4. Cube Root Function

Verbal:Name:Cube Root FunctionDomain:Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

5. Reciprocal Function

6. Reciprocal Square Function

Verbal:	Algebraic (Formula):
Name: Reciprocal Square Function	$y = \frac{1}{r^2}$
Domain: Range:	λ
Numerical (Anchor Points):	Graphical:

Part II: Identifying Characteristics of Functions

Quick Review – Proper Notation

When we refer to a portion of a function, we describe the <u>*x*-values</u> for that portion using either Set or Interval Notation:

Set Notation: $\{x | x \ge 3\}$ "The set of all x values such that x is greater than or equal to 3."

Interval Notation: $[3,\infty)$ "The set of all real values of x from 3 to infinity including 3."

The brackets and parentheses with Interval Notation are very important, for they tell us whether or not the endpoints of the interval are included in the set.

-] and [mean that the endpoint is included and that the function is defined at that point.
-) and (mean that the endpoint is not included or that the function is not defined at that point -- always use a parenthesis with an infinity symbol
- An interval can be closed on one end and open on the other.
- \cup is the union symbol and means to include all values from the first interval and all values from the second interval.
- \cap is the intersection symbol and means to include only the values that are in **both** the first interval and the second interval.

Quick Review – Definitions

- A function f is **increasing** on an interval if for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.
- A function f is decreasing on an interval if for any two numbers x₁ and x₂ in the interval, x₁ < x₂ implies f(x₁) > f(x₂).
- f(c) is called a **relative (or local) minimum** of the function f, if there is an open interval I containing c on which $f(c) \le f(x)$ for all x in I.
- f(c) is called a **relative (or local) maximum** of the function f, if there is an open interval I containing c on which $f(c) \ge f(x)$ for all x in I.
- f(c) is called an **absolute (or global) minimum** of the function f if $f(c) \le f(x)$ for all x in the domain of f.
- f(c) is called an **absolute (or global) maximum** of the function f if $f(c) \ge f(x)$ for all x in the domain of f.
- A smooth, continuous function f is **concave up** at c in its domain if the graph of f lies above the tangent line to f at c.
- A smooth, continuous function f is **concave down** at c in its domain if the graph of f lies below the tangent line to f at c.
- Generally speaking, a function is **continuous** if it does not contain any holes, jumps, or vertical asymptotes.
- Generally speaking, a function is **smooth** if it does not contain any corners or cusps.

Example: Identifying Characteristics of a Function

Characteristics Increasing: [-2,3] **Decreasing:** $(-\infty, -2] \cup [3, \infty)$ Constant: Never Global/Absolute Maximum: None Global/Absolute Minimum: None Local/Relative Maximum: point (3,5) A local maximum value of 5 occurs at x = 3. Local/Relative Minimum: point (-2,-4) A local minimum value of -4 occurs at x = -2. **Positive:** $(-\infty, -4) \cup (0, 6)$ Negative: $(-4,0)\cup(6,\infty)$ **Zero:** $\{x | x = -4, 0, 6\}$ Concave Up: $(-\infty, 0)$ **Concave Down:** $(0,\infty)$ **Points of Inflection:** (0,0)**End Behavior:** $f(x) \rightarrow -\infty$ as $x \rightarrow \infty$ $f(x) \rightarrow \infty$ as $x \rightarrow -\infty$

Problem Set II: Identifying Characteristics of Functions

Fill in the characteristics for the function above using proper notation. Assume (0, 0) and (4, 1) are the points of inflections.

Part III: Solving Equations and Inequalities

Students should be able to solve linear, quadratic, polynomial, rational, radical, and absolute value equations and inequalities.

Problem Set III-A: Solve the following equations. You should NOT use a calculator to solve. All solutions should be given as an exact answer (preferably simplified) – NO decimal approximations.

1.
$$[6-4x+2(x-7)]-52-3(2x-4)=6[3(2x-3)+6]$$

2.
$$8-3\left|\frac{1}{2}b-4\right|=2$$

3.
$$-2(2x-3)^2 + 14 = 0$$

4.
$$4t^3 + 4t^2 - 2t = 0$$

$$5. \qquad \frac{x}{x+2} - 4 = \frac{x+1}{x}$$

6.
$$\frac{2x}{x-1} + \frac{1}{x-3} = \frac{2}{x^2 - 4x + 3}$$

7.
$$2\sqrt{4-y} + 10 = 12$$

$$8. \qquad \sqrt{x+2} = 6 - \sqrt{7x+2}$$

9.
$$x^{\frac{2}{3}} + 3x^{\frac{1}{3}} + 2 = 0$$

10.
$$p(2p-5)^2 - 3(2p-5) = 0$$

Problem Set III-B: Solve the following inequalities. Show all work including any sign chart analysis.

11. $-6 \le 1 - 4(x+2) \le 16$

12. |1-2x| < 4

13. |2-5x| > 0

14. $6x^2 - 7x < 20$

15.
$$\frac{3}{x-2} - \frac{1}{x-4} \le 0$$