

Summer Assignment 2020-21

Course: AP Biology

Course. Ar biology	
Assignment title	Video Notes & Biochemistry Worksheets
Date due	Part 1 – Video Notes – due 1 st day/block of class Part 2 – Biochemistry Worksheets – due 2 nd day/block of class
Estimated time for completion	6 – 7 hours
Resources needed to complete assignment	 Textbook - <u>OpenStax Biology for AP Courses</u> Notes in packet Other supplies: device(s) with internet capabilities.
How the assignment will be assessed	The Video Notes and the Biochemistry Worksheets will be scored using the accompanying rubric and guidelines. Both assignments will be averaged together and will be counted as a project grade for the 1 st quarter.
Purpose of assignment	 Review of foundational material/concepts/skills. Expose students to required material/concepts/skills/texts that will not be covered during the academic year. Have students read material that will be discussed or used in class at the beginning of the year.

AP Biology Summer Assignment

Welcome to AP Biology! This course is designed to be the equivalent of a two-semester introductory biology course usually taken in the first year of college. In other words, it is a little like drinking from a fire hose. It will be a rewarding experience, but as with most things that are, it will also be challenging. Throughout the course, you will become familiar with major recurring ideas that persist throughout all topics and material.

The 4 Big Ideas of AP Biology

Big Idea 1: The process of evolution drives the diversity and unity of life.
Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.
Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes.
Big Idea 4: Biological systems interact, and these systems and their interactions possess complex properties.

On the pages that follow, you will find instructions for the two assignments that comprise your summer work for AP Biology. Both assignments will review biological chemistry concepts that you learned in freshman biology as well as foundational chemistry concepts you learned your sophomore year in chemistry. The first part of the assignment involves watching several assigned videos and taking video notes. The second part of your summer assignment consists of completing several sets of questions focusing on biological chemistry.

Your video notes are due on the <u>1st day</u> of AP Biology and your biochemistry worksheets will be due on the <u>2nd day</u>. Both will be averaged together and counted as a project grade for 1st quarter. <u>No late summer assignments will be</u> <u>accepted!</u>

Document	Page(s)
Assignment #1 – Video Notes	
 Instructions and Content Video List 	3
Assignment #2 – Biochemistry Notes & Worksheet Questions	
Notes	
 Organic Chemistry Basics – functional groups 	4
 Water 	5 – 8
 Carbohydrates 	9 - 10
o Lipids	11 – 13
• Proteins	14 – 17
Worksheet Questions	18 - 32

Included in this packet are the following documents:

Assignment #1 – Video Notes – due 1st day of AP Biology

Watch the videos listed below and take *hand-written* notes on each of them. The notes should be your *original work.* EACH note sheet will be scored 0 to 5 based on completeness and thoroughness as shown in the rubric below. Note pages **will not** be accepted late nor will they be accepted typed.

#	Video Content	Links
005	Essential Characteristics of Life	https://bit.ly/2HUpsES
010	Abiogenesis	https://bit.ly/2U6a7Yg
	Molecules of Life	https://bit.ly/2lwqLXK
	Carbohydrates	https://bit.ly/2L7RADv
	Lipids	https://bit.ly/2lqVDJh
	Proteins	https://bit.ly/2IJHWIS
	Water – A Polar Molecule	https://bit.ly/2TUsfnQ

0	2	3 – 4	5
No Credit	Below Expectations	Complete	Meets Expectations
No notes OR copied from a peer	Several criteria are missing from entry	All criteria are met, but there is room for improvement within criteria OR one criterion is missing from entry	All criteria listed below are met OR have been exceeded for each entry.

What does work that "meets expectations" have?

- ✓ Each video's notes are on a different page.
- \checkmark The video's title is written as it appears in the video on the top line of the paper.
- ✓ The notes are legibly written.
- ✓ Highlighting or colors are used to emphasize key points, new vocabulary, and/or important concepts.
- ✓ Examples are documented in some way when given in the video.
- ✓ Pictures, charts, or graphs are used to display details provided in the video.
- ✓ A summary of the video content is provided at the end of the notes. Please emphasize the summary in some way (title it, star it, highlight it, etc.)
- ✓ Each entry is pledged.

Notes are to be *original work* and are not to be copied from a peer – these serve as a log of what you have learned from the video. Copying them from a peer and not watching the video does you no good. You will receive zero credit if you are found submitting work that is too closely aligned with a classmate's work.

ORGANIC CHEMISTRY BASICS NOTES

FUNCTIONAL GROUP	DRAWING/FORMULA	PROPERTIES
Carboxyl	-COOH -C ⁰ ↔ -C ⁰ + H+ OH 0-	 Polar Water soluble Acid
Amino	$-N\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}$	 Polar Water soluble Weak base
Sulfhydral	-SH	 Form disulfide bridges Stabilize protein shape
Phosphate	$ \begin{array}{c} 0 \\ -0 - P - 0H \\ 0H \end{array} \rightarrow \begin{array}{c} -0 - P - 0^{-} + 2H^{+} \\ 0H \end{array} $	 Polar Water soluble Acid Important in energy transfer
Methyl	-CH₃ H -C−H H	 Nonpolar Not water soluble

PROPERTIES OF WATER: Liquid water is cohesive

Cohesion = H bonds between water molecules; H_20 molecules tend to stick tog. Importance = Transport H_20 against gravity in plants Higher surface tension

Water has a high specific heat

Takes a lot of energy to raise 1 gram of H_201 °C Why? Must break H bonds Liquid H_20 can absorb large amounts of heat with small changes in temperature

Water has a high heat of vaporization

Takes a lot of energy to convert liquid H_20 into vapor Why? Must break H bonds Keeps water in liquid state

Water expands with it freezes

Solid H_20 is less dense than liquid H_20 Why? In solid state H_20 locked into max. number of H bonds; takes up more space

<u>Water is a versatile solvent</u>

Will dissolve polar covalent and ionic compounds

pH = -log ₁₀ [H+] if [H+] = 10 ⁻⁷ then pH = 7	

[H+] x [OH-] = 10⁻¹⁴ If [H+] = 10⁻⁹ Then [OH-] = 10⁻⁵ pOH = 5 pH = 9

BUFFERS:		
Description	Function	Importance
Weak acids or bases	Minimize changes in pH	Controls chemical reactions
		Maintains
		homeostasis

BICARBONATE BUFFER SYSTEM:

 $H_2O \ + \ CO_2 \ \leftarrow \rightarrow \ H_2CO_3 \ \leftarrow \rightarrow \ HCO_3^- \ + \ H^+$

 HCO_3 - = Bicarbonate (weak base) H_2CO_3 = Carbonic acid (weak acid)

Major buffer system in blood Maintains blood pH between 7.38 and 7.42

Action:	Effect:
Increase [H ⁺] How? Fat metabolism OD on acidic drug	Increase [H+] Equilibrium shifts left H+ + HCO_3 - \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O Increase [CO ₂] Increase rate and depth of respiration
Increase Rate & Depth of Respiration Hyperventilate	Decrease $[CO_2]$ Equilibrium shifts left H+ + HCO ₃ - \rightarrow H ₂ CO ₃ \rightarrow CO ₂ + H ₂ O Blood pH increases

CARBOHYDRATES NOTES

Trioses

Pentose

Hexose

- Ribose

- Glucose

- Galactose

- 3 carbon sugar

- glyceraldehyde

- 5 carbon sugar

- 6 carbon sugar

- Deoxyribose

MONOSACCHARIDES:

- Simple sugars
- Monomers of di- and polysaccharides
- Store energy in chemical bonds

Glucose Glucose - Fructose Linear form (dry) ring form (in sol.)

DISACCHARIDES:

Double sugars Condensation Synthesis: removal of water molecule to form bond between monomers

POLYSACCHARIDES:	
Many monosaccharides covalently bonded together	
FUNCTIONS:	
Storage	Structural
Starch: storage carbohydrate in plants	Cellulose: plant cell wall component
Glycogen: storage carbohydrate in animals	Chitin: polymer of amino sugar building block of exoskeletons
STARCH VS CELLULOSE	
Starch	Cellulose
Polymer of α - glucose ⁶ CH ₂ OH	Polymer of β - glucose ⁶ CH ₂ OH
Branched α 1-4 linkages	Linear Unbranched β 1-4 linkages Most animals lack enzyme to break β 1-4 linkages

LIPIDS NOTES

General Characteristics:

Mostly hydrocarbon chains Fats, steroids, phospholipids

Not soluble in water

Building Blocks: н– с– о<u>н, но</u>– с– (сн₃) сн° Glycerol. н−с−о<u>н но</u>−с−(сн₂), сн₃ 3 Fatty Acids н-с-о<u>н, но</u>-с-(сн₂), сн_а H Q H−Ċ−O−Ċ−(CH₂)₀CH₃ + 3 H₂O Triglyceride H-C-O-C-(CH₂), CH₃ - C --O-- C -- (CH₂)_n CH₃ Ester linkage

PROTEINS NOTES

GENERAL CHARACTERISTICS AND IMPORTANCES:

- Polymers of amino acids
- Each has unique 3-D shape
- Vary in sequence of amino acids
- Major component of cell parts
- Provide support
- Storage of amino acids
- Receptor proteins; contractile proteins; antibodies; enzymes

PROTEIN CONFORMATION:	
Unique 3-D shape	
PRIMARY:	 Sequence of amino acids
	 Determined by genes
	(sequence of bases in DNA)
SECONDARY:	Regular repeated folding of
	peptide chain
α helix	 Folding stabilized by hydrogen
	bonds
B pleated	
sheet 200	
6 1 9 100	
0 480	
TERTARY	
TERTIARY:	Globular proteins
(563)V	Irregular contortion
(43623)	• Shape stabilized by H bonds,
ASTA	ionic bonds, nydrophobic
1500	Interactions, disultide bridges
QUATERNARY:	• Enzymes
~ ~	 Interaction of several polypoptides
	e Hemoolobin
	Collagen
CIER	oonagen
	Hemeelebin
	A polypoptido choire
	+ polypeptide chains

DENATURATION: Changing protein's native conformation Change shape = change in activity How? 1. High temperature 2. Chemical agent (acid or base) change in pH 3. Organic solvent

NAME _____

BLOCK _____ DATE _____

Summer Assignment Part #2 Biochemistry Worksheets

I have neither given nor received, nor will I give or receive, unauthorized aid on this assignment.

Student Signature

I. ORGANIC CHEMISTRY QUESTIONS

Circle and identify the functional group(s) found in each of the following illustrated molecules.

II. WATER, ACIDS, BASES, & BUFFERS QUESTIONS:

1. *Fill out* the following table. *Name and explain* five of water's unique properties, and *discuss* the biological importance/significance of each of these properties.

Property of Water	Explanation of Property	Biological Importance/Significance

2. *Match* the description/definition with the correct term.

Homogenous mixture of 2 or more substances	A. Aqueous solution
Dissolving agent	B. Hydrophilic
Material being dissolved	C. Hydrophobic
Solution where water is solvent	D. Solute
Water loving; molecules with an affinity for water	E. Solution
Water fearing; molecules that do not have an affinity for water	F. Solvent

3. *Explain WHY* water is a versatile solvent. Include water's structure in your explanation.

4. In general, what kinds of materials will not dissolve in water? ______

5. At equilibrium in pure water at 25^oC:

a. How does the $[H^+]$ compare to the $[OH^-]$?______

- b. What is the [H⁺]?______
- 6. Each of the following will affect the equilibrium established in pure water during the dissociation of water. *Describe* what effect each will have on the equilibrium by completing the following chart.

Addition of:	Effects on [H ⁺]	Effect on [OH ⁻]	Direction Equilibrium Shifts
H ₂ SO ₄			
кон			
NH ₃			

7. How does the [H+] compare to the [OH-] in each of the following:

	a. A neutral solution:
	b. An acidic solution:
	c. A basis solution:
8	. What is the pH range for most biological fluids?
	What biological fluid is the exception to this range?

9. *Complete* the following chart.

[H ⁺]	рН	[OH ⁻]	рОН
10 ⁻²			
	4		
		10 ⁻⁴	
			2

10. A patient has been vomiting for a prolonged period of time.

- a. What effect would this have on the [H+] in the blood? ______
- b. How will the bicarbonate buffer system respond to this change?

c. What effect will the buffer system response have on the rate of respiration?

d. If the buffer system does no how will the kidneys respon	t return the blood p d?	H to within the norr	nal range or if the	vomiting continues,
Will the kidneys excrete or r	eabsorb H ⁺ ?			
Will the kidneys excrete or r	eabsorb HCO ³⁻ ?			
II. CARBOHYDRATES	QUESTIONS:			
. <i>Match</i> the definition with the	correct term.			
A. Condensation Synthesis	B. Hydrolysis	C. Monomer	D. Polymer	E. Polymerization
Large molecule that co	onsists of many subu	nits called monome	rs	
Identical or similar sub	units of a polymer			
Process of linking mon	omers to form a pol	ymer		
Loss of a water molecu	ıle between two mo	nomers to form a co	ovalent bond betw	een the monomers
Breaking the covalent	bond between mone	omers by adding a w	ater molecule	
A.K.A. dehydration syr	ithesis			

2. *Indicate* if each of the following is an example of condensation synthesis or hydrolysis.

Reaction #1:		
Reactions that digest protei	ns, carbohydrate, or lipids	
Reaction #2:		
	м но_P-о-P-о- - 0- 0- - 0- 0-	
Reaction #3:		
		$ \begin{array}{c} 0 \\ -C \\ $
Reaction #4:		
Reactions that create protein	ns, carbohydrates, or lipids	
3. How can you tell if a chemical equ	lation represents:	
a. condensation synthesis?		
b. hydrolysis?		
4. What characteristic is used to clas	ssify/group carbohydrates? <i>Give a</i>	n example.
5. <i>Match</i> the description with the co	orrect term.	
A. Disaccharides B. Lactose	C. Maltose D. Monosaccharides	E. Polysaccharides F. Sucrose
Simple sugar		
General term used to de	scribe a molecule that consists of 2	simple sugars covalently bonded
General term used to des bonded	scribe a molecule that consists of 1	00s or 1000s of simple sugars covalently
Molecule that consists of	2 glucose molecules covalently bo	onded
Molecule that consists of	a glucose and a galactose covalen	tly bonded
Molecule that consists of	a glucose and a fructose covalent	ly bonded

6. *Identify* each of the following as either a **M**onosaccharide, a **D**isaccharide, or a **P**olysaccharide.

Sucrose	Maltose	Glucose
Galactose	Ribose	Lactose
Chitin	Deoxyribose	Starch
Glyceraldehyde	Glycogen	Amylose
Cellulose	Amylopectin	Fructose

7. *Draw* a glycosidic linkage between two glucose molecules.

8. Listed below are characteristics of four biologically important polysaccharides. Use the key below to indicate the polysaccharide described in each characteristic.

A. Cellulose	B. Chitin	C. Glycogen	D. Starch	
Polymer of α-glucose		Branched chain		
Polymer of β-glucose		Storage polysaccharide in animals		
Polymer of an amino sugar		Storage polysaccharide in plants		
α 1-4 glycosidic linkages		Component of plant cell walls		
β 1-4 glycosidic	linkages	Forms the ex	koskeleton in arthropods;	
Linear and unbra	anched	building mat	erial of cell wails in some fungi	

9. **Describe** how α -glucose is different from β -glucose (structurally & functionally).

10. *Discuss* how two polysaccharides, starch and cellulose, each having the same subunit (glucose), have completely different properties. Why can we digest starch but not cellulose?

IV. LIPID QUESTIONS:

1. *Explain* why lipids are insoluble in water. In your explanation relate their chemical structure to their insolubility.

2. Discuss three ways cholesterol is important for biological structure/function.

- 3. *Indicate* if each of the following is true of a **F**at, a **P**hospholipid, or a **S**teroid.
 - _____ Consists of glycerol and three fatty acids
 - _____ Energy source

- _____ Cushions and insulates
- _____ Consists of glycerol, 2 fatty acids, and a phosphate group
- _____ Triglycerides
- _____ Part of the molecule is hydrophilic and the other part is hydrophobic

____ Major component of cell membranes

Consists of four fused carbon rings – three 6-sided rings and one 5-sided

4. *Indicate* if each of the following is true of **S**aturated or **U**nsaturated fats.

5. Discuss why unsaturated fats are not solid at room temperature. Include their structure in your discussion.

V. PROTEIN QUESTIONS:

1. *Classify* each of the following amino acids as **nonpolar**, **polar uncharged**, **polar charged acidic** or **polar charged basic**. *Justify your classification*.

2. *Draw* two amino acids - cysteine and aspartic acid - with a peptide bond between them.

3. Use the diagram below to answer the questions that follow.

a. What level of protein structure/organization is shown in the diagram?

b. *Match* the following with the correct letter from the diagram.

_____ Hydrogen bonding ______ Hydrophobic interaction

_____ Disulfide bridge ______ Salt bridge

_____α helix

4. *Indicate* the level of protein structure (1, 2, 3, or 4) described in each of the following.

_____ α helix _____ Sequence of amino acids in a protein

_____β pleated sheets ______ Most enzymes

_____ Collagen and hemoglobin ______ Determined by the sequence of DNA bases

_____ Form stabilized by hydrogen bonds _____ Globular proteins

_____ Interaction among several polypeptide chains

_____ Regular, repeated folding of the peptide chain

_____ Form stabilized by hydrogen bonds, ionic bonds, hydrophobic interactions, and disulfide bridges

5. *Describe* what happens to a protein (i.e. its structure) when it is *denatured*.

6. *Explain* how denaturation affects the *function* of a protein.

7. *Explain how/why* each of the following conditions causes a protein to denature.

Subjecting the protein to high temperatures	
Placing the protein in a strong acid	
Placing the protein in an organic solvent	

VI. EXPERIMENTAL RESEARCH QUESTIONS

Introduction

After the tertiary structures of proteins were first shown to be highly specific, the question arose as to how the order of amino acids determined the three-dimensional structure. The second protein whose structure was determined was ribonuclease A, an enzyme from cows that was readily available from pancreases at slaughterhouses. Because it works in the highly acidic environment of the cow stomach, RNase A was stable compared to most proteins and easy to purify. RNase A has 124 amino acids, among which are eight cysteine residues which form four disulfide bridges. Were these covalent links between amino acids essential for the three dimensional structure? Christian Anfinsen and his colleagues set out to answer this question by first destroying these links by reducing the S-S bonds to SH and SH. With the links destroyed, they measured the three-dimensional structure of the protein (was it denatured?) as well as the effect of denaturation, the loss of enzyme activity. They then removed the mercaptoethanol and allowed the S-S bonds to reform by bubbling in oxygen gas and looked again at the structure and function of the enzyme. They found that indeed, the disulfide bonds between amino acids (primary structure) were essential for protein structure and function. Anfinsen was awarded the Nobel Prize in chemistry in 1973.

Analyze the Data

Question 1

Initially, disulfide bonds (S—S) in RNase A were eliminated because the sulfur atoms in cysteine were reduced (— SH). At time 0, reoxidation began and at various times, the amount of disulfide bond re-formation (blue circles) and the function of ribonuclease (enzyme activity; red circles) were measured by chemical methods. Here are the data:

A. At what time did disulfide bonds begin to form?

B. At what time did enzyme activity begin to appear?

C. *Explain* the difference between your answers for the times of (A) and (B).

Question 2

The three-dimensional structure of RNase A was examined by ultraviolet spectroscopy. In this technique, the protein was exposed to different wavelengths of ultraviolet light (measured in Angstroms [1 A = 10 nm]) and the amount of light absorbed by the protein at each wavelength was measured (E). Here are the results:

A. Look carefully at the graphs. What was the difference between the peak absorbance of native and reduced (denatured) RNase A?

B. When reduced RNase A was reoxidized (renatured), what did its observed spectrum most closely match, that of native RNase A or reduced RNase A?

C. Based on the *EVIDENCE*, what can you *conclude* about the structure of RNase A in these experiments from the data?

Question 3

In a second experiment, Anfinsen and Haber investigated the following question.

Question: What is the relationship between the amino acid sequence of a protein and its conformation?

Experiment: Anfinsen and Haber studied the 124-amino acid enzyme ribonuclease in the test tube. They knew that the native (functional) enzyme has four disulfide linkages between amino acids 26 and 84, 40 and 95, 58 and 110, and 65 and 72 (see figure). They treated the active enzyme with a mixture of urea and β -mercaptoethanol, which breaks disulfide linkages. They then removed the two chemicals and left the enzyme solution in air.

Results: The chemical treatment broke the four disulfide linkages, which caused the protein to denature and lose its enzyme activity. After the chemicals had been removed and the enzyme solution exposed to air, Anfinsen made the crucial observation that the protein renatured, slowly regaining enzyme activity. Ultimately the solution showed 90% of the activity of the native enzyme.

He realized that oxygen from the air had reacted with the –SH groups of the denatured enzyme causing disulfide linkages to reform, and that the enzyme had spontaneously refolded into its native, active conformation. All physical and chemical properties of the refolded enzyme the researchers measured were the same as those of the native enzyme, confirming that the same disulfide bridges had formed as in the native enzyme.

Conclusion: Anfinsen concluded that the information for determining the three-dimensional shape of ribonuclease is in its amino acid sequence.

If denatured ribonuclease renatures in the presence of a high concentration of urea, the renatured enzyme has physical and chemical properties similar to those of the native enzyme indicating that refolding had occurred, but the enzyme activity is less than 1% of that of the native enzyme. **Interpret this result.**