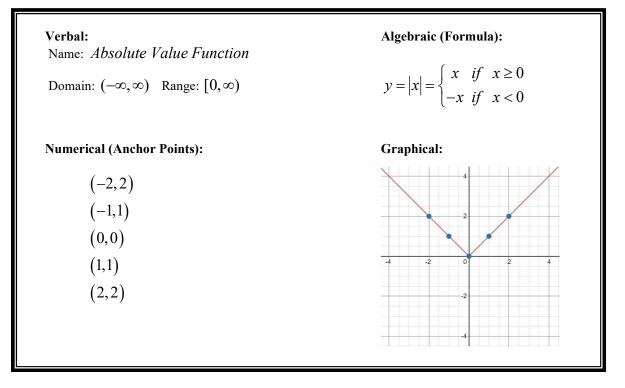
Name


Part I: Graphing Parent Functions and the Rule of Four

Quick Review – The Rule of Four

There are four basic ways of representing functions: verbal, algebraic, numerical, and graphical.

- Verbal includes listing the name of the function and describing its characteristics.
- Algebraic includes writing the equation of the parent function.
- Numerical includes writing 5 key anchor points and features, such as the location of any hole(s) and the equations for all asymptotes (if any). Choose "nice" *x* values often we use *x* values of -2, -1, 0, 1, 2 unless the function is not defined for those values or those values are hard to compute.
- Graphical includes plotting points and sketching the graph. Please indicate your scale on both axes.

Example: Absolute Value Parent Function

Problem Set I: Graphing Parent Functions and The Rule of Four

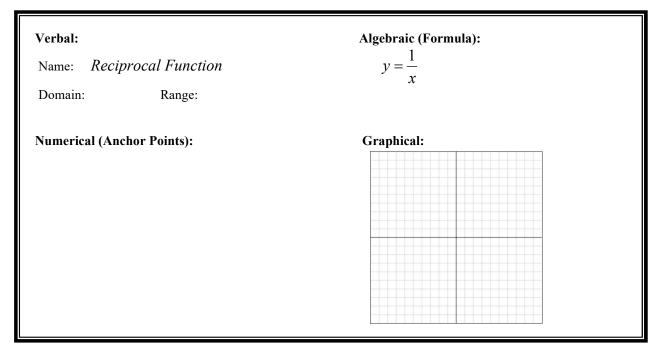
Given the name of the following parent functions, complete the "Rule of Four" charts for each.

1. Quadratic Function

Verbal: Name: Domain:	<i>Quadratic Function</i> Range:	Algebraic (Formula):
Numerical	(Anchor Points):	Graphical:

2. Square Root Function

Verbal: Name: Square Root Function Domain: Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:


3. Cubic Function

Verbal: Name: <i>Cubic Function</i> Domain: Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

4. Cube Root Function

Verbal:Name:Cube Root FunctionDomain:Range:	Algebraic (Formula):
Numerical (Anchor Points):	Graphical:

5. Reciprocal Function

6. Reciprocal Square Function

Verbal: Name: <i>Reciprocal Square Function</i> Domain: Range:	Algebraic (Formula): $y = \frac{1}{x^2}$
Numerical (Anchor Points):	Graphical:

Part II: Solving Equations and Inequalities

Students should be able to solve linear, quadratic, polynomial, rational, radical, and absolute value equations and inequalities.

Problem Set III-A: Solve the following equations. You should NOT use a calculator to solve. <u>All solutions should be given as an exact answer (preferably simplified) – **NO decimal** <u>approximations.</u></u>

1. [6-4x+2(x-7)]-52-3(2x-4)=6[3(2x-3)+6]

2.
$$8-3\left|\frac{1}{2}b-4\right|=2$$

3.
$$-2(2x-3)^2 + 14 = 0$$

4.
$$4t^3 + 4t^2 - 2t = 0$$

$$5. \qquad \frac{x}{x+2} - 4 = \frac{x+1}{x}$$

6.
$$\frac{2x}{x-1} + \frac{1}{x-3} = \frac{2}{x^2 - 4x + 3}$$

7.
$$2\sqrt{4-y} + 10 = 12$$

$$8. \qquad \sqrt{x+2} = 6 - \sqrt{7x+2}$$

9.
$$x^{\frac{2}{3}} + 3x^{\frac{1}{3}} + 2 = 0$$

10.
$$p(2p-5)^2 - 3(2p-5) = 0$$

Problem Set III-B: Solve the following inequalities. Show all work including any sign chart analysis.

11. $-6 \le 1 - 4(x+2) \le 16$

 $12. \qquad |1-2x| < 4$

13. |2-5x| > 0

14. $6x^2 - 7x < 20$

15.
$$\frac{3}{x-2} - \frac{1}{x-4} \le 0$$