Test Form D Chapter 10

Name \qquad Date
\qquad
Class \qquad Section \qquad

1. Find the standard form of the equation for the parabola with vertex $(4,0)$ and passing through the point $(1,2)$.
2. Write the equation in standard form and sketch its graph: $4 y^{2}-x^{2}-8 y-4 x=16$.
3. Write an equation for the tangent line to the ellipse $x^{2}+4 y^{2}=8$ at the point $(-2,1)$.
4. Sketch the curve represented by the parametric equations $x=4 \sin \theta$ and $y=3 \cos \theta$.
5. Find the corresponding rectangular equation by eliminating the parameter:
$x=t^{2}-1, y=t+2$.
6. Find the corresponding rectangular equation by eliminating the parameter: $x=2+\sec \theta, y=1+\tan \theta$.
7. Find the parametric equation for y if $x=e^{t}$ for the line passing through the points $(2,1)$ and $(-2,3)$.
8. Find $\frac{d y}{d x}$ for the curve given by $x=2 \cos \theta$ and $y=2+\sin \theta$.
9. Find the equation of the tangent line for the curve represented by $x=\sqrt{t}$ and $y=\frac{1}{2} t^{2}$ at the point where $t=4$.
10. Find $\frac{d^{2} y}{d x^{2}}$ for the curve given by $x=t^{3}+2$ and $y=t^{2}+t$.
11. Calculate the length of the arc of the curve given by $x=\frac{8}{3} t^{3 / 2}$ and $y=2 t-t^{2}$ between $t=1$ and $t=3$.
12. Sketch the polar point: $\left(-3, \frac{\pi}{3}\right)$.
13. Find the corresponding rectangular coordinates for the polar point $\left(-2, \frac{7 \pi}{6}\right)$.
14. Convert the rectangular equation $2 y-3 x=2$ to polar form.
15. Convert the polar equation $r=3 \cos \theta$ to rectangular form.
16. Find the value(s) of θ that give relative extrema of the function $r=1+2 \sin \theta$.
17. Sketch a graph of $r=3 \sin 2 \theta$.
18. Calculate the area inside one petal of $r=2 \cos 3 \theta$.
19. Find the value(s) of θ at the points of intersection of $r=5 \sin \theta$ and $r=2+\sin \theta$.
20. Determine the values of t at which the curve is concave downward: $x=t^{2}+t, y=t^{3}-3 t-1$.
