Test Form D	Name	Date
Chapter 10	Class	Section

- 1. Find the standard form of the equation for the parabola with vertex (4, 0) and passing through the point (1, 2).
- 2. Write the equation in standard form and sketch its graph: $4y^2 x^2 8y 4x = 16$.
- 3. Write an equation for the tangent line to the ellipse $x^2 + 4y^2 = 8$ at the point (-2, 1).
- 4. Sketch the curve represented by the parametric equations $x = 4 \sin \theta$ and $y = 3 \cos \theta$.
- 5. Find the corresponding rectangular equation by eliminating the parameter: $x = t^2 - 1, y = t + 2.$
- 6. Find the corresponding rectangular equation by eliminating the parameter: $x = 2 + \sec \theta$, $y = 1 + \tan \theta$.
- 7. Find the parametric equation for y if $x = e^t$ for the line passing through the points (2, 1) and (-2, 3).
- 8. Find $\frac{dy}{dx}$ for the curve given by $x = 2 \cos \theta$ and $y = 2 + \sin \theta$.
- 9. Find the equation of the tangent line for the curve represented by $x = \sqrt{t}$ and $y = \frac{1}{2}t^2$ at the point where t = 4.

10. Find $\frac{d^2y}{dx^2}$ for the curve given by $x = t^3 + 2$ and $y = t^2 + t$.

11. Calculate the length of the arc of the curve given by $x = \frac{8}{3}t^{3/2}$ and $y = 2t - t^2$ between t = 1 and t = 3.

12. Sketch the polar point: $\left(-3, \frac{\pi}{3}\right)$.

13. Find the corresponding rectangular coordinates for the polar point $\left(-2, \frac{7\pi}{6}\right)$.

14. Convert the rectangular equation 2y - 3x = 2 to polar form.

- 15. Convert the polar equation $r = 3 \cos \theta$ to rectangular form.
- 16. Find the value(s) of θ that give relative extrema of the function $r = 1 + 2 \sin \theta$.
- 17. Sketch a graph of $r = 3 \sin 2\theta$.
- **18.** Calculate the area inside one petal of $r = 2 \cos 3\theta$.
- **19.** Find the value(s) of θ at the points of intersection of $r = 5 \sin \theta$ and $r = 2 + \sin \theta$.
- **20.** Determine the values of t at which the curve is concave downward: $x = t^2 + t$, $y = t^3 3t 1$.